Xilinx Zynq使用HLS实现OpenCV的开发流程
领取MOLI红包

栏目分类
Bone ShibaSwap中文网

你的位置:BHO Network中文网 > Bone ShibaSwap中文网 > Xilinx Zynq使用HLS实现OpenCV的开发流程

Xilinx Zynq使用HLS实现OpenCV的开发流程

发布日期:2025-01-03 18:50    点击次数:171

  摘要:首先介绍OpenCV中图像类型和函数处理方法,之后通过设计实例描述在VivadoHLS中调用OpenCV库函数实现图像处理的几个基本步骤,阐述从OpenCV设计到RTL转换综合的开发流程。本文引用地址:   关键词:可编程;处理器;VivadoHLS;OpenCV;Zynq AP SOC   开源计算机视觉 (OpenCV) 被广泛用于开发计算机视觉应用,它包含2500多个优化的视频函数的函数库并且专门针对台式机处理器和GPU进行优化。Xilinx VivadoHLS高层次综合工具能够使用C/C++ 编写的代码直接创建RTL硬件,显著提高设计生产力,同时,Xilinx Zynq全可编程SOC系列器件嵌入双核ARM Cortex-A9处理器将软件可编程能力与FPGA的硬件可编程能力实现完美结合,以低功耗和低成本等系统优势实现单芯片无以伦比的系统性能、灵活性、可扩展性,加速图形处理产品设计上市时间。OpenCV拥有成千上万的用户,而且OpenCV的设计无需修改即可在 Zynq器件的ARM处理器上运行,但是利用OpenCV实现的高清处理经常受外部存储器的限制,尤其是存储带宽会成为性能瓶颈,存储访问也限制了功耗效率。使用Xilinx公司的VivadoHLS高级语言综合工具,可以轻松实现OpenCV C++视频处理设计到RTL代码的转换,输出Zynq的硬件加速器或者直接在FPGA上实现实时硬件视频处理功能。同时,Xiinx公司的Zynq All-programmable SoC是实现嵌入式计算机视觉应用的好方法,解决了在单一处理器上实现视频处理性能低功耗高的限制,Zynq高性能可编程逻辑和嵌入式ARM内核,是一款性能功耗最优化的图像处理集成式解决方案。   1 OpenCV中图像IplImage, CvMat, Mat 类型的关系和VivadoHLS中图像hls::Mat类型   OpenCV中常见的与图像操作有关的数据容器有Mat,cvMat和IplImage,这三种类型都可以代表和显示图像,但是,Mat类型侧重于计算,数学性较高。而CvMat和IplImage类型更侧重于“图像”,OpenCV对其中的图像操作(缩放、单通道提取、图像阈值操作等)进行了优化。   1.1 OpenCV中的Mat矩阵类型   在OpenCV中,Mat是一个多维的密集数据数组。可以用来处理向量和矩阵、图像、直方图等等常见的多维数据。   Mat类型较CvMat与IplImage类型来说,有更强的矩阵运算能力,支持常见的矩阵运算。在计算密集型的应用当中,将CvMat与IplImage类型转化为Mat类型将大大减少计算时间花费。   1.2 OpenCV中的CvMat与IplImage类型   在openCV中,CvMat和IplImage类型更侧重于“图像”,尤其是对其中的图像操作进行一定程度的优化。OpenCV没有向量(vector)的数据结构,但当我们要表示向量时,需要用矩阵数据表示。但是,CvMat更抽象,它的元素数据类型并不仅限于基础数据类型,而且可以是任意的预定义数据类型,比如RGB或者别的多通道数据。、   在OpenCV类型关系上,我们可以说IplImage类型继承自CvMat类型,当然还包括其他的变量将之解析成图像数据。IplImage类型较之CvMat多了很多参数,比如depth和nChannels。IplImage对图像的另一种优化是变量origin原点,为了弥补这一点,OpenCV允许用户定义自己的原点设置。   1.3 VivadoHLS中图像数据类型hls::Mat<>   VivadoHLS视频处理函数库使用hls::Mat<>数据类型,这种类型用于模型化视频像素流处理,实质等同于hls::steam<>流的类型,而不是OpenCV中在外部memory中存储的matrix矩阵类型。因此,在用vivadoHLS实现OpenCV的设计中,需要将输入和输出HLS可综合的视频设计接口,修改为Video stream接口,也就是采用HLS提供的video接口可综合函数,实现AXI4 video stream到VivadoHLS中hls::Mat<>类型的转换。   2 使用VivadoHLS实现OpenCV到RTL代码转换的流程   2.1 OpenCV设计中的权衡   OpenCV图像处理是基于存储器帧缓存而构建的,它总是假设视频frame数据存放在外部DDR 存储器中,因此,OpenCV对于访问局部图像性能较差,因为处理器的小容量高速缓存性能不足以完成这个任务。而且出于性能考虑,基于OpenCV设计的架构比较复杂,功耗更高。在对分辨率或帧速率要求低,或者在更大的图像中对需要的特征或区域进行处理是,OpenCV似乎足以满足很多应用的要求,但对于高分辨率高帧率实时处理的场景下,OpenCV很难满足高性能和低功耗的需求。   基于视频流的架构能提供高性能和低功耗,链条化的图像处理函数减少了外部存储器访问,针对视频优化的行缓存和窗口缓存比处理器高速缓存更简单高效,更易于使用VivadoHLS 在FPGA部件中采用数据流优化来实现。   VivadoHLS对OpenCV的支持,不是指可以将OpenCV的函数库直接综合成RTL代码,而是需要将代码转换为可综合的代码,这些可综合的视频库称为HLS视频库,由VivadoHLS提供。   OpenCV函数不能直接通过HLS进行综合,因为OpenCV函数一般都包含动态的内存分配、浮点以及假设图像在外部存储器中存放或者修改。   VivadoHLS视频库用于替换很多基本的 OpenCV函数,它与OpenCV具有相似的接口和算法,主要针对在FPGA架构中实现的图像处理函数,包含了专门面向FPGA的优化,比如定点运算而非浮点运算(不必精确到比特位),片上的行缓存(line buffer)和窗口缓存(window buffer)。图2.1展示了在Xilinx Zynq AP SOC器件上实现视频处理的系统结构。   图2.1 Zynq视频处理系统结构   2.2 在FPGA/Zynq开发中使用VivadoHLS实现OpenCV的设计流程   设计开发流程主要有如图2.2三个步骤。   1. 在计算机上开发OpenCV应用,由于是开源的设计,采用C++的编译器对其进行编译,仿真和debug,最后产生可执行文件。这些设计无需修改即可在 ARM内核上运行OpenCV应用。   2. 使用I/O函数抽取FPGA实现的部分,并且使用可综合的VivadoHLS Video库函数代码代替OpenCV函数的调用。   3. 运行HLS生成RTL代码,在VivadoHLS工程中启动co-sim,HLS工具自动重用OpenCV的测试激励验证产生的RTL代码。在Xilinx的ISE或者Vivado开发环境中做RTL的集成和SoC/FPGA实现。   图2.2 在FPGA/Zynq设计中使用OpenCV的开发流程   2.2.1 VivadoHLS视频库函数   HLS视频库是包含在hls命名空间内的C++代码。#include “hls_video.h”   HLS视频库与OpenCV等具有相似的接口和等效的行为,例如:   OpenCV库:cvScale(src, dst, scale, shift);   HLS视频库:hls::Scale<...>(src, dst, scale, shift);   HLS视频库的一些构造函数具有类似的或替代性的模板参数,例如:   OpenCV库:cv::Mat mat(rows, cols, CV_8UC3);   HLS视频库:hls::Mat mat(rows, cols);   ROWS和COLS指定处理的最大图像尺寸。   表1 VivadoHLS视频处理函数库   2.2.2 VivadHLS实现OpenCV设计的局限性   首先,必须用HLS视频库函数代替OpenCV调用。   其次,不支持OpenCV通过指针访问帧缓存,可以在HLS中使用VDMA和 AXI Stream adpater函数代替。   再者,不支持OpenCV的随机访问。HLS对于读取超过一次的数据必须进行复制,更多的例子可以参见见hls::Duplicate()函数。   最后,不支持OpenCVS的In-place更新,比如 cvRectangle (img, point1, point2)。   下表2列举了OpenCV中随机访问一帧图像处理对应HLS视频库的实现方法。   表2 OpenCV和HLS中对一帧图像像素访问对应方法   OpenCV HLS视频库 读操作 pix = cv_mat.at(i,j) pix = cvGet2D(cv_img,i,j) hls_img>> pix 写操作 cv_mat.at(i,j) = pix cvSet2D(cv_img,i,j,pix) hls_img<< pix   2.3 用HLS实现OpenCV应用的实例(快速角点滤波器image_filter)   我们通过快速角点的例子,说明通常用VivadoHLS实现OpenCV的流程。首先,开发基于OpenCV的快速角点算法设计,并使用基于OpenCV的测试激励仿真验证这个算法。接着,建立基于视频数据流链的OpenCV处理算法,改写前面OpenCV的通常设计,这样的改写是为了与HLS视频库处理机制相同,方便后面步骤的函数替换。最后,将改写的OpenCV设计中的函数,替换为HLS提供的相应功能的视频函数,并使用VivadoHLS综合,在Xilinx开发环境下在FPGA可编程逻辑或作为Zynq SOC硬件加速器实现。当然,这些可综合代码也可在处理器或ARM上运行。   2.3.1 设计基于OpenCV的视频滤波器设计和测试激励   在这个例子中,首先设计开发完全调用OpenCV库函数的快速角点滤波器设计opencv_image_filter.cpp和这个滤波器的测试激励(不在本例中展示),测试激励用于仿真验证opencv_image_filter算法功能。OpenCV算法实现的设计代码如下:   void opencv_image_filter(IplImage* src, IplImage* dst)   {   IplImage* gray = cvCreateImage( cvGetSize(src), 8, 1 );   std::vectorkeypoints;   cv::Mat gray_mat(gray,0);   cvCvtColor(src, gray, CV_BGR2GRAY );   cv::FAST( gray_mat, keypoints, 20, true);   cvCopy( src,dst);   for (inti=0;i   {   cvRectangle(dst, cvPoint(keypoints[i].pt.x-1,keypoints[i].pt.y-1),   cvPoint(keypoints[i].pt.x+1,keypoints[i].pt.y+1), cvScalar(255,0,0),CV_FILLED);   }   cvReleaseImage( &gray );   }   例子2.3.1 通常的OpenCV视频处理代码opencv_image_filter.cpp   上面的例子是直接调用OpenCV在处理器上软件应用实现的例子,可以看到在算法设计中直接调用opencV库函数,测试激励读入图像,经过滤波器处理输出的图像保存分析。可以看到,算法的处理基于IPIimage类型,输入和输出图像都使用此类型。   2.3.2 使用IO函数和Vivado HLS视频库替换OpenCV函数库   需要特别说明的是,Xilinx公司通常使用的视频处理模块是基于AXI4 streaming协议进行不同模式见像素数据的交互,也就是我们所说的AXI4 video接口协议格式。为了和Xilinx视频库接口协议统一,VivadoHLS提供了视频接口函数库,用于从OpenCV程序中抽取需要进行RTL综合转换的顶层函数,并把这些可综合的代码和OpenCV不可综合转换的代码进行隔离。然后,对需要综合转换为RTL代码的OpenCV函数,用Xilinx VivadoHLS提供相应功能的可综合video函数进行替换。最后在C/C++编译环境下仿真验证OpenCV代码和替换video函数后功能的一致性,并在VivadoHLS开发环境中做代码综合和产生RTL代码的co-sim混合仿真验证。   VivadoHLS可综合的视频接口函数:   Hls::AXIvideo2Mat 转换AXI4 video stream到hls::Mat表示格式   Hls::Mat2AXIvideo 转换hls::Mat数据格式到AXI4 video stream   首先,我们对2.3.1中OpenCV的设计进行改写,改写的代码还是完全基于OpenCV的函数,目的是为了对视频的处理机制基于视频流的方式,与VivadoHLS视频库提供函数的处理机制一致。   其次,使用Vivado HLS视频库替代标准OpenCV函数,并使用可综合的视频接口函数,采用video stream的方式交互视频数据。用于FPGA的硬件可综合模块由VivadoHLS视频库函数与接口组成,我们用hls命名空间中的相似函数代替OpenCV函数,增加接口函数构建AXI4 stream类型的接口。   void image_filter(AXI_STREAM& input, AXI_STREAM& output, int rows, int cols)   {   hls::Mat _src(rows,cols);   hls::Mat _dst(rows,cols);   hls::AXIvideo2Mat(input, _src);   hls::Mat src0(rows,cols);   hls::Mat src1(rows,cols);   hls::Mat mask(rows,cols);   hls::Matdmask(rows,cols);   hls::Scalar<3,unsigned char> color(255,0,0);   hls::Duplicate(_src,src0,src1);   hls::Mat gray(rows,cols);   hls::CvtColor(src0,gray);   hls::FASTX(gray,mask,20,true);   hls::Dilate(mask,dmask);   hls::PaintMask(src1,dmask,_dst,color);   hls::Mat2AXIvideo(_dst, output);   }   例子2.3.2 采用VivadoHLS视频库替换后可综合的设计opencv_image_filter.cpp   最后,在vivadoHLS开发环境下综合例子2.3.2.2的设计,产生RTL代码并重用OpenCV的测试激励验证RTL代码功能。   3 VHLS实现OpenCV设计流程总结   OpenCV函数可实现计算机视觉算法的快速原型设计,并使用VivadoHLS工具转换为RTL代码,在FPGA可编程逻辑上或者Zynq SoC逻辑上作为硬件加速器,实现高分辨率高帧率的实时视频处理。计算机视觉应用与生俱来的异构特性,使其需要软硬件相结合的实现方案,采用Vivado HLS视频库能加快OpenCV函数向FPGA或Zynq SOC全可编程架构的映射。   参考文献:   [1]Vivado Design Suite User Guide: High-LevelSynthesis(UG902).   [2]Accelerating OpenCV applications with Zynq using VivadoHLS video libraries(XAPP1167)   [3]Bradski G,Kaebler “A.Learning OpenCV”.ISBN 978-7-302-20993-5   [4]Implementing Memory structure for video processing in the vivadoHLStool(XAPP793)   [5] Rafael C.Gonzalez,Richard E.Wood “Digital Image Processing, Third Edition”ISBN 978-7-121-11008-5

上一篇:没有了

下一篇:VR头显棋局风云变幻 国内手机厂商该如何落子?

Powered by BHO Network中文网 @2013-2022 RSS地图 HTML地图

Copyright Powered by365站群 © 2013-2024